The Role of the Plasmasphere in Radiation Belt

نویسنده

  • Robert Johnston
چکیده

The plasmapause separates cold dense plasma in the inner magnetosphere from hot, low-density outer magnetosphere plasma. This boundary is very dynamic in response to changes in magnetospheric convection and other stormtime phenomena. The outer radiation belt is also dynamic during stormtime in terms of both radial location and energetic particle population. It is proposed that outer radiation belt particles are variously depleted and energized due to wave-particle interactions inside and outside the plasmasphere. Testing this hypothesis requires simultaneous observations of energetic particles and the plasmapause location. We derive plasmapause locations using DMSP identifications of the plasmapause signature in the ionosphere, specifically the light ion trough (LIT). This offers significantly improved temporal coverage given the continuous multiyear coverage by multiple DMSP satellites and the overlapping radiation belt observations by SAMPEX. The LIT location is semi-automatically identified from DMSP RPA observations of light ion densities, then mapped along magnetic field lines to the plasmapause. Initial comparisons show good agreement between these plasmapause locations and those obtained from IMAGE EUV observations. Case studies also show good correlations between DMSP-identified plasmapause locations and SAMPEX observations of outer radiation belt particle distributions and precipitating particle microbursts. This approach will eventually provide an extensive database of plasmapause locations, permitting us to quantify the relationship between the LIT and the plasmapause, and improve understanding of the relationship between the plasmapause location and the outer radiation belt.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling radiation belt electron dynamics during GEM challenge intervals with the DREAM3D diffusion model

[1] As a response to the Geospace Environment Modeling (GEM) “Global Radiation Belt Modeling Challenge,” a 3D diffusion model is used to simulate the radiation belt electron dynamics during two intervals of the Combined Release and Radiation Effects Satellite (CRRES) mission, 15 August to 15 October 1990 and 1 February to 31 July 1991. The 3D diffusion model, developed as part of the Dynamic Ra...

متن کامل

Global MHD modeling of resonant ULF waves: Simulations with and without a plasmasphere

We investigate the plasmaspheric influence on the resonant mode coupling of magnetospheric ultralow frequency (ULF) waves using the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamic (MHD) model. We present results from two different versions of the model, both driven by the same solar wind conditions: one version that contains a plasmasphere (the LFM coupled to the Rice Convection Model, whe...

متن کامل

Magnetosphere response to high-speed solar wind streams: A comparison of weak and strong driving and the importance of extended periods of fast solar wind

[1] Much attention has been focused on the reaction of the magnetosphere to the solar wind during the recent extended solar minimum (2006–2010). Although this period was exceptionally quiet when categorized by some parameters (e.g., the number of sunspots) the solar wind still contained features which impacted the Earth’s magnetosphere and caused geomagnetic disturbances. Recurrent corotating i...

متن کامل

Atmospheric losses of radiation belt electrons

[1] A numerical model of the low-altitude energetic electron radiation belt, including the effects of pitch angle diffusion into the atmosphere and azimuthal drift, predicts lifetimes and longitude-dependent loss rates as a function of electron energy and diffusion coefficient. It is constrained by high-altitude ( 20,000 km) satellite measurements of the energy spectra and pitch angle distribut...

متن کامل

A simulation study of RX-mode waves generation in the equatorial plasmasphere

The generation mechanism of RX-mode waves in the equatorial plasmasphere has not been well understood. The Akebono passing through the storm time geomagnetic equator shows the possibility of the local enhancement of RX-mode waves in association with intense Z-mode waves in the equatorial region. We use the initial parameters inferred from observational data from around the plasma-wave generatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007